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Abstract-The statical and the dynamical behaviour ofcable nets is studied. Fully constrained and
underconstrained cable nets are considered. The conditions for initial stability and the prestressing
of the nets are formulated. A method for the analysis of the nodal displacements and the change in
the internal forces in the cables due to static loads is proposed. The cases where linear algebra can
be used are discussed. The method is extended to consider the dynamical behaviour of the net. Its
free dynamical response and forced vibration are investigated.

INTRODUCTION

An extensive amount of work has been done in studying the nodal displacements and the
change of the internal forces ofcable nets due to statical and dynamical loads. The difficulty
of the analysis lies in the fact that the system is geometrically non-linear. Intricate non­
linear methods in which the problem is analysed step by step are proposed for this purpose;
see Buchholdt et al. (1968), Irvine (1981) and Otto (1966). Some commercial computer
programs based on these methods are available on the market. There have been a few
attempts, by one of the authors and others, to develop an approximate linear method of
analysis; see Vilnay (1981), Vilnay and Soh (1982), Calladine (1982), Pellegrino and
Calladine (1984), Vilnay (1985), Pellegrino and Calladine (1986) and Viinay (1987).

In this work the linear method is developed to consider the non-linear effect. The final
nodal displacements are considered and the governing equations are formulated. The cases
and loads in which the displacements of the net are small and linear algebra is accurate are
formulated. The loads in which some of the linear equations should be replaced by higher
order algebraic equations are discussed. The fact that it is easy to detect where the net
displacements are small and linear algebra is accurate is of major advantage. It makes the
analysis very simple and even where large number of nodes are considered it imposes no
major difficulties. Also in the cases where the nodal displacements are large and some of
the equations are of high order the proposed formulation gives the possibility of solving
the problem quicker and more efficiently than the step by step methods in which the load
is increased incrementally at each step.

The method is developed to consider the dynamical response of the net. It is shown
that in underconstrained cable nets the free vibration is associated with two types of
frequencies, high and low. A simple method is proposed for the analysis of these frequencies.
It is shown that the net free dynamical displacements are governed by the low frequencies
whereas the change in the internal forces is governed by the high frequencies. The effect of
dynamical imposed load is studied and the cases where small displacements are expected
are discussed and formulated.

PRESTRESSING AND INITIAL STABILITY

From an engineering point of view every cable net used in structures should satisfy the
following initial stability requirement.

All cables should be straight under all expected loads.
In order to satisfy this requirement there should be a certain amount of tension in all
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cables always. Thus a satisfactory cable net should be :

(i) prestressable.
(ii) prestressing induces tension in all cables.

The level of prestressing is that needed to keep a required minimum amount of tension
in all cables under all expected loads.

The net is prestressable and condition (i) is satisfied where all nodes. considering the
forces induced into the net numbers by prestressing. are in equilibrium. The nodal equi­
librium of the net takes the form:

AP=O (l)

in which A is the equilibrium matrix, a function of the net geometrical configuration and
P is the vector of the forces induced by prestressing. Equation (I) is satisfied where:

r <m (2)

in which r is the rank of matrix A and m is the number of the unknown forces induced by
prestressing into the net and/or the number of columns of matrix A.

A cable net is fully constrained where :

r = nand m > n (3)

in which n is the number of equilibrium equations and/or the number of rows of matrix A.
In this case matrix A and vector P can be partitioned into:

(4)

in which matrix AO is a square matrix of r x r established from matrix A with det AO -:1= O. Ag
is an r x (m-r) matrix composed of the rest of the elements of matrix j properly arranged.
pI is composed of the r elements of vector P associated with AO and ph is composed of the
rest of the elements of vector P associated with Ag.

A cable net is underconstrained where:

r < n.

In this case matrix A and vector P can be partitioned into:

(5)

A9J [PIJje ; P = ph (6)

in which matrices Ad and Ae are appropriate (n-r) x rand (n-r) x (m-r) matrices,
respectively. Inequality (2) implies a linear relationship between the elements of matrix A:

Ad = VAo ; (10)TVT = (Ad)T
Ae = VAg; (19)TVT = (Ae)T (7)

in which Vis the transformation matrix of(n - r) x rand ( )T indicates the matrix transposed.
By using inequalities (2) and (7), matrix V takes the form :

(8)

The forces induced by prestressing into the elements can be determined by using eqn
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(I). The number of independent degrees of freedom of the prestressing is equal to the order
of vector ph. In the case where ph takes the fonn :

I

o
Pi = 0

the forces induced into the net takes the form :

in which

By following the same method ~ can be established:

o
I

~= 0

(9)

(10)

(II)

and by using eqn (I), P~ and P 2 can be detennined. By grouping vectors P j the prestressing
matrix Pof the order m x (m - r) can be established. Condition (ii) is satisfied where it is
possible to find a vector D in which all elements are positive of the order (m - r) so that:

PD>O. (12)

The elements ofvector PD indicate the magnitude ofthe forces induced in the elements
of the cable net due to prestressing.

The net shown in Fig. 1 is composed of five cables intersecting at six nodes. Matrix A

E...

E...

E...

41ft
.~

41ft 41ft + 4",

Fig. I. A cable net.
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1 q

o 0 0 -0.937 0.993 0 0 0 0

0.894 0 0 0 0 0 0 - 1.0 0

-0.417 0 0 0.351 -0.124 0 0 0 0

000 0 0 000 0

o 0 0 0 - 1.0 1.0 0 0 0

o -0.447 0 0 0.124 0.124 0 0 0

o 0 0 0 1.0 -0.993 0.937 0 0

o 0.894 0 0 0 0 0 0 0

o 0 -0.447 0 0 -0.124 0.351 0 0

000 0 0 0 000

o 0 0 0 0 0 0 1.0 0

o 0 0 0 0 000 0

000 0 0 0 0 0 0

o 0 0 0 0 0 0 0 1.0

o 0 0 0 0 000 0

000 0 000 0 0
------------------------------------------o 0 0 0 0 0 0 0 - 1.0

000 0 0 0 0 0 0
Ad

1°
o 0 0 0 0 0 0 1 0

1

o 0 0 0 0 0 0 I. 0
1

o 0 0 0 0 0 0 1 0
1

1.0 0 0 0 0 0 0 1- 0.894
1o 0 0 0 0 0 01 0

o 0 0 0 0 0 0: 0

o 0 0 0 0 0 0
1

01

- 1.0 0 0 0 0 0 0 : 0

o 0 0 0 0 0 0' 0

o -0.937 0.993 0 0 0 0 1 0
1

o 0 0 0 0 - 0.894 0 1 0
1

o 0.351 -0.124 0 0 -0.447 0 1 0
1

o 0 - 1.0 1.0 0 0 0 1 0
1o 0 0 0 0 0 - 0.894 1 0

o 0 0.124 0.124 0 0 -0.447: 0

_0 ~ Q_~Q.29}_Q.~37 0 0_ : Q
o 0 0 0 0 0 0 1 0

1

o 0 0 -0.124 0.351 0 0 1-0.447

1d A"

. (13)

The rank of matrix 1 is 16, thus inequality (2) is satisfied and this cable net is
underconstrained. Matrix 1 is partitioned into 1°, 19 , 1d and 1e

, as shown in eqn (13). By
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using eqn (7), matrix V takes the form :

__ [ 0.749 1.0 2.0 0.0 0.248 -2.0 0.0 0.0 0.0
V - -0.375 -0.5 -1.0 0.5 -0.248 0.0 -0.375 0.5 1.0

-0.749 1.0 -2.0 -0.248 -1.0 2.0 0.0 ]
0.375 -0.5 1.0 0.248 0.0 0.0 0.375 . (14)

Equation (6) implies that there is one element in vector ph. By using eqn (9), the prestressing
matrix takes the form of a vector:

jH = [1.00 1.00 1.00 1.93 1.82 1.82 1.93 0.91 0.91

0.91 1.93 1.82 1.82 1.93 1.00 1.00 1.00]. (15)

It can be seen that in the case where D = a, where a> 0, eqn (12) is satisfied. Where
D = 20.0 kN, the prestressing forces in the cables are:

P = 20PkN. (16)

STATIC LOADS

In the case where the cable net is loaded by static load Q imposed at the net nodes the
nodal equilibrium given by eqn (I) takes the form:

A(P+F)+Q = 0 (17)

in which F indicates the change in the internal forces in the prestressed cables due to the
static load. By using eqn (I), eqn (17) takes the form:

AF+Q=O. (I 8)

In the case of a fully constrained cable net, eqn (18) is a consistent set of linear equations.
It can be solved by considering the relationship between the nodal displacements 8 and the
change in the internal forces (Livesley, 1969):

(19)

where Kis the uncoupled stiffness matrix of the cables. By using eqn (19), eqn (18) takes
the form:

B8= -Q

B= AKA-r. (20)

This is the case ofordinary reticulated shells which is discussed extensively in the literature.
In the case of underconstrained nets, inequality (2) implies that the rank of matrix B

is rand jj can be partitioned in accordance with matrix Ainto:

- [jjO B9]
B= BJ Be (21)

in which jjo is an r x r with a determinant different from zero and jjg, BJ and Be are the
appropriate rx (n-r), (n-r) xr and (n-r) x (n-r) matrices composed of the rest of the
elements of matrix jj accordingly. Also the elements of these matrices are inter-related:
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B" = VB"

(22)

Because of the nature of matrix B of an underconstrained cable net, it is possible to
distinguish between two loading cases. The so-called "fitted load" case and the "non-fitted
load". In the case of a "fitted load" the first elements of the load vector Q. denoted by Q',
are related to the last (n - r) elements of vector Q denoted by Qh:

(23)

Where the load is a "fitted load" and eqn (23) is satisfied, eqn (20) is a consistent set
of equations. This fact implies that only loads satisfying eqn (23) can be sustained by the
net in its prestressed configuration and the nodal displacements caused by it are small and
due to the elasticity of the net elements. By using matrix analysis and eqns (21) and (19),
the change of the internal forces in the "fitted load" loading cases take the form:

(24)

Because of the singularity of matrix A, the nodal displacements of underconstrained
cable nets cannot be determined by using eqn (19). Moreover, there is the possibility of
rigid body movement of the members without inducing any forces in them. In the case
where the nodal displacements take the form:

(25)

in which the order of vector bf is (n-r), eqn (19) takes the form:

Equation (26) implies that the nodal displacements given by eqn (25) are due to rigid body
movement of the net members and are not associated with a change in the internal forces.
In this case the nodal displacements caused by the "fitted load" can be found by considering
their effect on the elements ofmatrix A. Because of the nodal displacements the equilibrium
matrix changes from A to a new equilibrium matrix denoted by G. The elements of matrix
G are a function of the node coordinates and the nodal displacements. The elements of
matrix Gare investigated by studying the change of the configuration of a typical member
of the cable net shown in Fig. 2. The inclination of the member changes from:

os ",0 - x ji
. I - Jx2+y2 + ~2 X - X x' ,. -}' -y' z - - -~. (27)c ""x - t;; , 0 - • ji ji - ji· ji - • j -. i, .' ji - j i , ji - - j -,

to

(28)

In the case of small displacements, eqn (28) takes the form

(29)
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Fig. 2. The distortion of a typical element.
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Equation (29) indicates that the change in cos iX.~ is a linear combination of the nodal
displacements.

Equation (29) indicates that matrix Gcan be written in the following form :

(30)

in which the elements of matrix 0 are a linear combination of the nodal displacements
associated with the last three terms on the right-hand side of eqn (29). By using eqn (30),
eqn (17) takes the form:

(A+O)(P+F)+Q = O.

By using eqn (I), eqn (31) takes the form :

AF+W+Q=O

in which

W = O(P+F).

The solution of eqn (32) is assumed to take the form :

(31)

(32)

(33)

(34)

in which the ~$ are the displacements associated with the change in the internal forces in
the members of the net and the ~l> given by eqn (25). are the displacements associated with
rigid body movement of the members of the net which do not cause any change in these
internal forces. ~$ takes the form :

(35)

~~ is composed of r elements and the last (n - r) elements of vector ~$ are equal to zero.
By using eqn (19), the change in the internal forces associated with the nodal dis­

placements given by eqn (33) takes the form :

(36)
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In practical cases of "fitted load" the contribution of the first term of eqn (32) is much
larger than the contribution of the second term. Because of the fact that the elements of
matrix A are not independent it is possible to divide eqo (32) into two sets of equations, a
set of r linear equations of the form :

and a set of (n - r) equations of the form:

Wh_VW 1 =0.

(37)

(38)

in which W' and W b are the first r and the last (n -I') elements of vector W. By using eqo
(37), J~ takes the form :

(39)

By using eqn (24) and by using J~ and eqn (36), F can be predicted and 157 can be found by
using eqn (38) by means of linear algebra only.

In the cases where the load does not satisfy eqn (23), the "non-fitted load", eqn (18)
is not a consistent set of equations. This fact indicates that "non-fitted load" will cause a
large change in the geometrical configuration of the cable net until equilibrium is established
at all nodes. Also in this case the nodal displacements can be seen as composed of nodal
displacements caused by rigid body movement of the members and caused by the defor­
mation of the members as given by eqn (34). In the case of "non-fitted load" the nodal
displacements associated with rigid body movement of the members of the cable net are
much larger than the nodal displacements caused by the deformation of the members

(40)

In this case the effect of Os on the elements of matrix 0 can be ignored:

(41)

The large nodal displacements affect the relationship between the nodal displacements and
the change in the internal forces and eqn (19) takes the form :

(42)

By using eqn (42), eqn (31) takes the form:

(43)

Equation (43) is the cable net equation. The first two terms are a linear combination of the
nodal displacements whereas the third and the fourth are of second order and the fifth one
is of third order.

By using eqns (25), (26) and (35), eqn (43) can be divided into two sets of equations.
The first set is a set of r equations which takes the form :

in which

WI = OP
W 2 = O.5AK(O)TO,

- -nW 3 =OKA 155

W 4 = O.50K(O)Toi.

(44)

(45)
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Here WIt, Wi, w3, W~ and wt W~, W~, W~ are composed of the first r elements and the
last (n -r) elements of the appropriate vectors. The second set ofequations is a set of (n-r)
equations which take the form :

W~ - VW I
, +W~ - Vw3+W~ - VW~+Qb - f'QI = O. (46)

In practical cases the contribution of WI
3 in eqn (44) can be ignored and 15~ takes the form:

(47)

By using eqn (47), 157 can be found by eqns (46) which take the form of a set of (n-r)
fourth-order algebraic equations. Equations (47) and (46) can be analysed by using an
iteration in which 15, is first analysed by using eqn (46) assuming 15~ = 0 then 15~ is predicted
by using eqn (46) considering the new 15~. The method can be carried out until satisfactory
convergence is achieved. In this case at every step of the analysis. eqn (46) is a set of (n - r)
third-order equations.

In the case of the cable net shown in Fig. I, where all cables have a cross-section of I
cm2

, matrix 8 takes the form:

A

o
-B

o
-c

D

o
o
o

o -B 0

o -F 0
E H 0

-F 0 E
o I 0

o -J 0

000

o O-G

000

-c D 0

000

I -J 0

000

K O-C
o L-D

-C -D A
000

-I -J B

o
o
o
G

o
o
o
E

-F

o
o
o
o
I

-J
B

-F
H

00000000

o -G 0 0 0 0 0 0

00000000

00000000
82 =

00000000

o 0 0 0 0 0 0 -F

00000000

00000000

A = 8.95kNmm- l
; B = 2.131 kNmm- ' ;

D = 0.611 kNmm- l
; E = 8.576kNmm- l ;

G = 5.00 kN mm - 1 ; H = 1.540 kN mm - I ;

J = 0.076kNmm-'l; K = 9.922kNmm- l ;

o
o
o

-F
o
o
o
o

C = 4.926kNmm- l
;

F= I.788kNmm- l ;

1= 0.615kNmm- ' ;

L = I.047kNmm- ' .

(48)

The non-zero elements of matrix {j are given in Table I. (The nodal displacements are
in metres.)

The loading case in which six vertical point loads of 20 kN are applied to all the nodes
is found by using eqn (23) as the "fitted load". The vertical displacement at each of the six
nodes found by using eqns (31) and (38) is only 0.2 cm at nodes A, C, D and F and 0.24



Table I. The non-zero clements of matrix 0 for the cable net shown in Fig. I.

....,
o
00

011 +0.22415 1
0'1 + 0.045t5 z+ 0.0915,
OJ! +0.17915,+0.09151
0,. = -0.25(15 16 -15,)
O,z +0.24415,
06Z +0.179t56+0.09,~"

On +0.22415 7
0" + 0.045<5 x+ 0.098,).
0'1.1 +0. I79b.+O.09')x
Oll'~ +0.25(<5 IO-b l )

0,," + 0.234,~ II

0,,, +O.25('~,z-'~I)

011" + 0.25(,~ 11-'~ 10)
0,<1, = 0.2411('~"-,)111

O'j' +0.25('),,-,~.)

0,.,0 +0.25(,)'.-,)7)
0'72 = + 0.04515 19 + 0.0'),).
O, .. u +0.2S(b,.-b.)

0 1, = +0.029b l +0.077b,
O2, = +0.234b,
0.\4 = +0.20S<5J +0.077b,
0413 = +0.249(t5,-b 14)

0" = +0.004(0,-0 1)+0.03(15,-0,)
0., = +0.244(b.-t5.,)+0.03(,)j-II,)
07• = +0.004(t5 7-t5,)+0.03(t5.-b.)
Og. = +0.248(Og-b,,)
0.,. = +0.244(t5.,-t5.)+0.03('~5-,)7)

0 111 " = +0.2915 10 +0.077')11
O,"Z = +0.247(,)11-,)")
0,," = +O.20St5,,+O.077"1I1
0,", = +(U)()4('~ll'-II",)

11"11 = +0.2411('~I4- ,).1
0"" = +1I.244(I~,,-,~,.)+1I.03(,I,\--I~II)

01,,,, = +0.004(,) ,. -,) ,,) +O.03«(~, j-(I 1',)
II", = +0.249«(~,,-,~,)

0" II = + 0.244(1)" - 0, s) + 0.1I3(,~ Ll el,.)

0" = O.OO4("I-,l s) -0.03(,). -,~,)
0" = 0.248(,)2-0,,)
0" = 0.244(,)1-,),7) -0.03(<5,-b,)
0"4 = +0.234<5,
0,. = 0.004(,),-15,)-0.03(156-,1.)
0•• = 0.244(el.-t5.)-0.03(')s-el7)
0 77 = +0.029el,)7- 0.077<5.
0., = +0.234b g

0." = +0.205,).-0.077,)7
0 1111 , = +0.OO4(,),,-,),o)-I1·03(b,,-,)d
0'"5 = +O.045b II -0.0'),)"
(l"" = 0.224«(1" ,),,1 0.03(e5,. '~'O)

0, III 0" +O.tl04('~l!'-'~I.I-tl.m(,),,--,I,,)

0, ... o~ +O.1I4S,~,.-·tl.tI'M"

II,;, \ = + 1I.244(,~" - II, s) - (1.03(,1 '1-' II, hI
II,.,. = +O.02')(~,,,-0.077",,

0"" = -0.248(b,--,),,)
0" .. = +0.205(),,-0.077(~,.

olH = 1I.2S(,) ", -,) ,)

OJ' = 0.2S('), -,)11)

0'17 = +04So,-0.090,.
OJ. = 0.2S(0,,-,I.,1
0"'0 = 0.25(,)"-<1,,,)

0,," = 0.25(,1.-0 ,,)

0"", = +1I.224(~ '0

0,,1, +0.17')el ,. (l.0'),)"
0,"" -~ +0.224,)"

0, ,'/0 = + 0.17'),) I' .. (I.()<J.) "

0,,,,, = +0.224,~.

0"" = +0.17'),) "J- O.O'),~\

<:>
-<r:
z...
-<

""::l
0.

~

il'
8
m
:;e

'"
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at nodes Band E. In the case where the vertical point load of 20.0 kN is applied to nodes
A and F only, the vertical displacement at these joints found by using eqns (46) and Hi)
is 6 cm. The large nodal displacements associated with the "non-fitted load" compared with
the "fitted load" are typical of underconstrained cable nets.

THE FREE DYNAMIC RESPONSE

In the case of free dynamical response of the net, eqn (17) takes the form :

A(P+F)+M,5' = 0 (~9)

where M is a diagonal matrix of the net nodal masses and ,5' is the vector of the nodal
acceleration. By using eqn (I), eqn (49) takes the form:

(50)

In the case of a fully constrained cable net, eqn (50) is a consistent set of equations. It is the
case ofundamped systems with multiple degrees of freedom which is discussed extensively in
the literature. The free vibration frequencies and the modes of displacements are found by
considering the eigenvalues and eigenfunction of eqn (50).

In the case of underconstrained cable nets, eqn (49) is not a consistent set of equations.
This fact indicates that the change in the net configuration due to dynamical displacements
should be considered. By using eqns (43), eqn (49) takes the form:

(51)

In the case of very small dynamical displacements where the second and third order
of the displacements can be ignored, the solution of eqn (51) takes the form :

(521

in which ot; and ON; are vectors of order (n-r) and r of the maximum amplitude of the
nodal displacements, and Wi and t/Ji are the appropriate angular frequency and phase angle
of the mode. The frequencies of response of the net can be divided into two groups, high
frequencies of vibration w7 and low frequencies of vibration ll1 where (w7)2 » (W~)2. Where
high frequencies of vibrations are considered, eqn (51) can be practically divided into two
sets of equations, a set of r equations of the form :

(53)

in which MO is the matrix composed of the elements in the first r rows and columns of
matrix M; and a set of (n - r) equations of the form:

(5~)

in which M' is composed ofthe last (n - r) x (n - r) columns and rows ofmatrix M. Equation
(54) implies:

(55)

By using eqn (55), eqn (53) takes the form:

(56)
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The r modes and frequencies of free vibration associated with the high frequencies of
response can be found by using eqn (56).

In the case where low frequencies ofvibration are considered, eqn (51) can be practically
divided into two sets of equations, a set of r equations which takes the form:

jjO~v, = 0

which implies:

~N, = 0

and a set of (n-r) equations which by considering eqn (58) takes the form:

(57)

(58)

(59)

The (n - r) frequencies and modes of free vibration associated with the low frequencies of
response can be found by using eqn (59).

In the case where the nodal displacements are moderately large and the second- and
third-order effects can be ignored only where the high frequencies of response are considered,
the mode of response in the high frequencies takes the form given by eqn (54) and eqn (59)
takes the form :

Equation (60) indicates a non-linear response in which the low frequencies of the net
response depend on the amplitude of the nodal displacements. It can be predicted by using
any of the well-established methods for non-linear dynamics.

In the case where the nodal displacements are large, the second- and third-order
effect cannot be ignored where the response associated with low and high frequencies are
considered. In this case all the frequencies of response depend on the amplitude of the nodal
displacements. In practical cases of large nodal displacements where jj~ » W> and where
eqn (40) is valid, eqn (51) can be divided into two sets of equations, a set of r equations of
the form:

(61)

and a set of (n - r) equations of the form :

By using eqn (61) and Duhamel's integral, in which the normal modes and frequencies of
vibration are the eigenvalues and eigenfunctions of the self-adjoint equation on the left­
hand side of eqn (61), the relationship between ~~, 07 and 67 can be established. The
magnitude of ~r can be determined by solving the non-linear free vibration problem given
by eqn (62).

In the case of the cable net shown in Fig. I there are two modes of low frequencies. In
the case where the mass of the net is 32 N S2 cm- I concentrated at each node, the low
vibration frequencies found by using eqn (59) are 2.024 and 2.446 s- '. There are 16 modes
of high frequency and the lowest ofthe high frequencies given by eqn (56) is 7.468 S-I. The
large difference in the magnitude of the square of the low and high frequencies of free
dynamical response, which in this case is 4.098 and 5.983 compared with 55.779, is typical
of underconstrained cable nets.

FORCED VIBRATION

In the case where a dynamical load Q imposes the nodes of a fully constrained net,
eqn (50) takes the form:
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(63)

This is the case of an undamped system with multiple degrees of freedom which is discussed
extensively in the literature.

In the case where the dynamical load Q imposes the nodes of an underconstrained
cable net, eqn (51) takes the form:

In the case of small nodal displacements where the effect of high order of nodal
displacements can be ignored, eqn (64) takes the form:

(65)

In this case the nodal displacements can be found by using Duhamel's integral considering
the modes and frequencies of free vibration found earlier. Large nodal displacements are
particularly expected at low frequencies of vibration. Only in the cases where the response
in these frequencies is eliminated, is the assumption of small nodal displacements valid.

By using Duhamel's integral the elimination of the response in low frequencies is
conditioned, in the case where the net is initially at rest, by:

(66)

Equations (66) and (23) indicate that also in the case of dynamical response, small nodal
displacements are conditioned by "fitted load". It should be noted that in the case of forced
vibration, this condition is not enough due to the possibility of a resonance between the net
responses in high frequencies and of the "fitted load".

In the cases where the load is "non-fitted load" the higher order effect of nodal
displacements cannot be ignored. In these cases the nodal displacements take the form
given by eqn (34) and the condition given by eqn (40) is valid. In practical cases where
BO~~ » W~, eqn (64) can be divided into two sets of equations, a set of r equations of the
form:

(67)

and a set of (n-r) equations of the form:

(68)

By considering the eigenvalues and eigenfunctions of the self-adjoint equation on the
right-hand side of eqn (67) and by using Duhamel's integra!. ~~ can be determined as a
function of07 and 07. In this case, eqn (68) takes the form of (n-r) fourth-order dynamical
equations of or which can be solved by using the well-established methods for the analysis
of non-linear dynamical systems.

CONCLUSIONS

In the previous pages the behaviour of fully constrained and underconstrained cable
nets was discussed. It was shown that initial stability is satisfied where the net is prestressable
and prestressing induces tension in all cables. It was shown that the response of a fully
constrained cable net is similar to an ordinary reticulated shell. In the case of under­
constrained cable nets only in the so-called "fitted load" loading cases are the nodal
displacements small and due to the elastic rigidity of the members of the cable net. Other
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loads will cause large nodal displacements due to rigid body movement of the members. A
method was proposed to analyse these nodal displacements. The method was extended to
consider the dynamical behaviour of the net. It was shown that the free dynamical response
of the net is associated with high and low frequencies of vibration. The net response to a
dynamical imposed load was investigated. Also in this case only where the dynamical load
is a "fitted load" and no resonance with the high free vibration frequencies take place, are
the nodal displacements small. In other loading cases the nodal displacements are large and
a method was proposed for their analysis.
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